Scientific news and articles
Male pipefish decide who survives
Saturn's rings a chaotic clutter
Researchers develop desal on a chip
Final missing piece of insulin lock found
Volcano helped dinosaurs gain upper hand
Bouncing current could speed up charge
Bleaching leaves Lord Howe reef 'on knife edge'
Floor price for booze good as taxes, study
Concerns over varroa mite resistance
Microbes breathe life into oxygen theory
Pre-history rewritten as new human discovered
Dung beetle claims strongest insect title
Scientists unearth Australian tyrannosaur
Splitting cyclone reveals Neptune's nature
Junk food can become addictive: study
Bumblebees have superfast colour vision
Black holes may be 'missing dark matter'
Magnets can manipulate morality: study
Sun helps bats find home in the dark
LHC to begin 'Big Bang' project
Trial of bionic eye within three years
Easter eggs may be good for your heart
Mega-flood triggered European ice age
Finch genome music to researcher's ears
Nanowires create volts of electricity
Every move you make, every step you take, you could soon be generating electricity according to a group of scientists in the United States.

By cramming 20,000 nanowires into three square centimetres, scientists from Georgia Tech's Nano Research Group have created the world's first device powered solely by piezoelectric materials.

A piezoelectric material is something that, when pushed or pulled, generates a mild electrical charge.

The researchers at Georgia Tech hope within three to five years piezoelectric nanowires, woven into a cotton shirt or housed in a shoe heel, could charge a cell phone or laptop battery after even a short walk.

"This is a key step to designing technology that will be useful in the near future," says Professor Zhong Lin Wang co-author of two new papers in Nature Nanotechnology and Advanced Materials.
Squeezing out volts

Quartz and cane sugar crystals are common piezoelectric materials; when pressure is applied, a very small electrical current is produced.

But over the last five to six years, scientists have worked with cheap zinc oxide and powerful lead zirconate titanate or PZT.

While the power generated from these materials has steadily risen into the millivolt range, it hasn't yet produced enough to actually power a device.

Now, according to the two new papers published by Wang's group at Georgia Tech, piezoelectrics can generate voltages up to 1.26 volts, and soon will produce voltages much higher than that.

Wang and colleagues used plentiful and easy-to-manipulate zinc oxide nanowires to create their nanogenerator. An individual zinc oxide nanowire is so tiny that it's invisible to the human eye, measuring anywhere between 50 and 200 nanometres across and about five microns in length.

Twenty thousand nanowires, placed side by side and end to end, covers three square centimetres, with two thin electrodes hanging off either end.

This unique arrangement maximises the electricity the piezoelectric nanowires can create. The wires work with each other, amplifying the electrical charge to record levels as the single layer is pushed back and forth with the most gentle of nudges.
Greater potential

Pushing the arranged nanowires harder or faster would bump the power output up to 30 times without damaging the device. If more powerful, and more expensive, gallium nitride replaced the cheap zinc oxide nanowires the power output could increase another 10 times.

That's more than enough energy to power most consumer devices, if the piezoelectric material were in motion constantly.

If a device weren't in constant motion however, no energy would flow, and any electrical device connected to the nanowires would shut off. For laptops and cell phones, which have batteries build into them, this doesn't matter; the electricity from the nanowires will charge the battery.

An extra few minutes of talk time would be great for cell phone owners, but Wang envisions these nanowires powering a range of electrical devices.

Other tiny piezoelectric-powered devices could sense fires and gather weather data in areas outside the reach of traditional power grids. To power such small sensors Wang will create tiny batteries or supercapacitors to store the electricity generated by his advanced piezoelectric nanowires.

Other scientists are enthusiastic about the new nanowires.

"I think the major accomplishment is that typical piezoelectric nanowires can produce about 30 millivolts," says Professor Liwei Lin of the University of California, Berkeley , who also does piezoelectric research. "This time [Wang] actually got a huge output."
Commercial products

Lin's work is in creating single piezoelectric nanowires much longer than Wang's, long enough to be woven into clothing.

It will likely be three to five years before either Wang's or Lin's work will be found in a commercial product, but Lin notes that piezoelectrics has made tremendous progress during the last few years, much of it led by Wang. The next few years will be even more exciting.

"My prediction is that in the next few years you will see commercial products," says Lin.

New Zealand's GM livestock given reprieve
Nano diamonds to become a doctor's best friend
Ocean saltiness reaching new limits
Volcanic ash unlikely to cool planet
Silk forms 'intimate' brain connection
New drug improves hepatitis C outcome
Microbial life discovered in asphalt lake
Green tea may strengthen your teeth
Head-ramming dino had 'gears' in skull
Clever crows show innovative behaviour
Research casts doubt on brain training
Multiple unknowns cloud volcano's impact
Staying fit helps men 'do it longer'
Copenhagen sets Earth for more warming
Solar spacecraft begins study of our Sun
Mixed messages on gene patenting
Gene study finds multiple species of orca
Dreaming boosts learning and creativity
Scientists measure massive ocean current
Genes influence smoking addiction: study
Nanowires create volts of electricity
Fisheries urged to diversify their 'take'
Chimps confront death in human-like ways
Chile to host world's biggest telescope
Trapping light to improve solar cells
Experts debate use of HPV test
Japan to launch 'space yacht'
Sea ice loss key to Arctic warming, study
Australian lasers to track orbiting junk
Thawing nitrous oxide overlooked: study
'Sound bullets' could blast cancer
Lasers could spark clean nuclear power
Seaweed slows black sea snakes down
Asteroid impacts cause crustal crisis: study
Flu jab link to increased H1N1 risk: study
Intestinal germ helps sushi digestion
Researcher closes in on freezing conundrum
Test identifies smokers at highest risk
New species of human found in 'death trap'
'Planet of love' still hot and active
Stress takes its toll on tiny lizard
Scientists record world's tiniest nudge
Cell signals shed light on breast cancer
Parasites behind seasonal allergies
Study finds maternal deaths falling
Pluto's family set to grow tenfold
Diet cuts Alzheimer's risk: study
Whales get physical when seas get rough
'Tweets' could warn of future epidemics
Quolls force-fed toads in survival fight
Researchers question use of silver dressings
Scientists create truly random numbers
Visit Statistics